Synchrotron infrared spectromicroscopy as a novel bioanalytical microprobe for individual living cells: cytotoxicity considerations.
نویسندگان
چکیده
Synchrotron radiation-based Fourier transform infrared spectromicroscopy is a newly emerging analytical tool capable of monitoring the biochemistry within an individual living mammalian cell in real time. This unique technique provides infrared (IR) spectra, hence chemical information, with high signal to noise at spatial resolutions as fine as 3-10 microm. Mid-IR photons are too low in energy (0.05-0.5 eV) to either break bonds or to cause ionization, and the synchrotron IR beam has been shown to produce minimal sample heating. However, an important question remains, "Does the intense synchrotron beam induce any cytotoxic effects in living cells?" In this work, we present the results from a series of standard biological assays to evaluate any short- and/or long-term effects on cells exposed to the synchrotron radiation-based infrared (SR-IR) beam. Cell viability was tested using alcian blue dye exclusion and colony formation assays. Cell-cycle progression was tested with bromodeoxyuridine (BrdU) uptake during DNA synthesis. Cell metabolism was tested using a 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. All control, 5, 10, and 20 min SR-IR exposure tests (267 total and over 1000 controls) show no evidence of cytotoxic effects. Concurrent infrared spectra obtained with each experiment confirm no detectable biochemical changes between control and exposed cells.
منابع مشابه
Tracking chemical changes in a live cell: Biomedical Applications of SR- FTIR Spectromicroscopy
Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an indiv...
متن کاملSynchrotron-Based FTIR Spectromicroscopy: Cytotoxicity and Heating Considerations.
Synchrotron radiation-based Fouriertransform infrared (SR-FTIR)spectromicroscopy is a newly emergingbioanalytical and imaging tool. This uniquetechnique provides mid-infrared (IR)spectra, hence chemical information, withhigh signal-to-noise at spatial resolutionsas fine as 3 to 10 microns. Thus it enablesresearchers to locate, identify, and trackspecific chemical events within anindividual livi...
متن کاملIndividual Human Cell Responses to Low Doses of Chemicals Studied by Synchrotron Infrared Spectromicroscopy
Vibrational spectroscopy, when combined with synchrotron radiation-based (SR) microscopy, is a powerful new analytical tool with high spatial resolution for detecting biochemical changes in individual living cells. In contrast to other microscopy methods that require fixing, drying, staining or labeling, SR-FTIR microscopy probes intact living cells providing a composite view of all of the mole...
متن کاملSynchrotron radiation identified human chemical fingerprints – a novel forensic approach
Synchrotron radiation x-ray fluorescence microprobe and infrared spectromicroscopy have been used to generate fundamental data and to analyze and visualize latent human fingerprints with the goal of developing an advanced forensic technique to identify complicated partial latent prints. The chemical composition of fingerprints (sweat) is well documented in medical literature, and techniques abo...
متن کاملSynchrotron Radiation Infrared Spectromicroscopy: a Non- Invasive Chemical Probe for Monitoring Biogeochemical Processes
A long-standing desire in biogeochemistry is to be able to examine the cycling of elements by microorganisms as the processes are happening on surfaces of earth and environmental materials. Over the past decade, physics, engineering and instrumentation innovations have led to the introduction of synchrotron radiation-based infrared spectromicroscopy. Spatial resolutions of less than ten microme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2002